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Abstract— In this work an original procedure, based on the
boundary element method (BEM), is carried out for the full-
wave modal analysis of dielectric waveguiding structures with
arbitrary cross section. A novel integral-equation formulation is
developed after a careful analysis of the discontinuities in the
dyadic kernel. Numerical solutions are then achieved and tested
for both conventional and the new algorithms. Results for several
important practical structures are obtained and compared to data
from other numerical approaches and from measurements, to
emphasize the accuracy, efficiency, and versatility of the new
implementation.

1. INTRODUCTION

YHE ELECTROMAGNETIC characterization of dielectric
rJ[ waveguiding structures is an area of considerable the-
oretical and practical interest, both for microwave and for
optical applications [1], [2]. Many different types of dielectric
guides have been the subject of several analysis techniques.
Since most of these structures cannot be solved analytically,
various numerical methods have been previously developed in
order to calculate the relevant modal properties (propagation
wavenumbers, field configurations, etc.). In the literature, a lot
of material can be found about these numerical methods and
the distinctive computational features (accuracy, versatility,
efficiency, and so forth) [3], [4].

In this work. a new procedure is developed based on the
boundary element method (BEM), and used to solve the modal
problem for cylindrical dielectric structures having arbitrary
cross section. The new method is accurate, efficient, and gives
complete information about the guiding structures.

As is well known, the complexity reduction of one spatial
dimension, typical of BEM approaches. is extremely conve-
nient in terms of memory space and computation time [4];
on the other hand, problems can arise from rather involved
pre-processing, and numerical convergence.

Compared with the BEM formulations already outlined
in the literature [5]-[7], the procedure that is developed
here has some important distinctive advantages. In particular,
with the present formulation it is possible to have great
flexibility in the choice of basis functions for the unknowns,
thus enlarging significantly the class of algorithms for the
numerical solution of the integral equations. To achieve this,
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and to eliminate some complicated numerical problems, a
detailed analysis of the singularities of the integral-equation
kernels (represented by dyadic Green’s functions) becomes
necessary. The numerical solution is then obtained through
different discretization techniques, both usual (point matching
and Galerkin’s methods [4], [6]) and unusual (Nystrom method
[8]), which are tested as for their accuracy and efficiency.

This BEM procedure provides a new competitive tool for
full-wave modal analysis of a variety of dielectric structures
of practical interest. Several examples are simulated here,
including both uniform dielectric waveguides and resonators
of NRD (nonradiative dielectric) type [9], having various
common and uncommon shapes. Specific attention is paid to
problems that are extremely sensitive from a computational
viewpoint: for instance, the effects of slight perturbations in
the cross section shape (e.g., notches or cuts) are tested, thus
deriving useful information for the design of devices such as
filters of dual-mode type [10].

Our results are compared to data from various numerical
techniques presented in the literature [11}-{15]; other use-
ful information is derived by developing specific reference
methods and comparing with experimental investigations [9,
10]. These tests demonstrate the important qualities of this
new BEM approach. emphasizing the excellent properties of
accuracy, economy and versatility.

II. DESCRIPTION OF THE ANALYSIS PROCEDURE

The boundary element method is applied here with the
goal of obtaining the complete spectrum of guided modes for
cylindrical dielectric structures of arbitrary cross section, as
shown in Fig. 1.

The general formulation of the problem is based on the
equivalence principle, by expressing the fields in the interior
and exterior of the cylinder by means of free-space dyadic
Green’s functions, related to the different media which occupy
the two regions. By imposing the continuity of the unknown
tangential components of the electric and magnetic fields on
the air/dielectric interface, a coupled set of integral equations
on the interface surface is obtained.

According to the standard approaches, the longitudinal
symmetry shown by the structures of interest suggests a com-
mon 2-dependence of the type exp(—j0z) for the unknowns,
where ( is the propagation constant. The integration along z
furnishes a Fourier transform and the problem becomes two-
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Ho

Fig. 1. Cylindrical dielectric waveguide structure of arbitrary cross section,
analyzed with the boundary element method (BEM). The local coordinate
system on the boundary and the other parameters mtroduced in the analysis
are indicated.

dimensional. In the cross section of the structure the position
vector will be represented by ry; on the boundary s of the
cross section (where the integrations are performed), a local
‘rectangular coordinate system ng,lo,zp (normal, tangential,
and longitudinal unit vectors, respectively) may be chosen, as
~shown in Fig. 1.

The fields in the external (superscript e) and internal (su-
perscript ¢) regions can be expressed in the following integral
forms (we present for brevity only the expression for the
electric field, since it is possible to immediately deduce the
magnetic field by means of the duality principle)

E/i(r,) = —/ + jwio 74 3.()) - GEi(), v; B)ds’
e 74 3,n(x}) - (V' + jB20)

X Gf/i(r;,rt;ﬂ)ds

where the equivalent electric and magnetic currents J. and
J,, are defined as

@

Je =ng X H= Z()Hl - loHZ =ZoJe, — 10Hz
Jn = —Ig X E=—zE,+1oF, = Z(]sz +1E, )

and the transformed free-space dyadic Green’s functions G /i
are deduced from the two-dimensional scalar Green’s function

gt

G/ raf) = [T+ k2<V' + §670)(Y} + 7o)
X gt/ (rt’ rt)
1
gi(riom) = 1 H” (ol = mi]),

; 1
gi(ry 1) = = H? (el = ve)) 3)

where: ko) = kg — 8, k. = kger — 07, and k is the wavenum-
ber of the medium in which the corresponding Green’s func-
tion is calculated: i.e., k = ko = w,/HoEo in the air (e region)
and k& = ko./€, in the dielectric (z region).

In spite of the relative simplicity. of the BEM formulation,
‘the effective solution of the integral-equation system presents
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considerable difficulties, both from the anafytical and the
numerical point of view.

In connection with these questions, it should be pointed
out that in the BEM procedure presented in the literature
[5]-[7] the operations involving derivatives on the Green’s
functions are usually transferred to the unknowns, so that the
degree of singularity for the integral kernels is reduced. In the
present formulation, however, we have preferred to maintain
the derivative operations on the Green’s functions, in order
to make the choice of basis functions in the expansion of the
unknowns more flexible. As a consequence, this choice allows
us to significantly enlarge the class of the numerical techniques
that can be used for faster and more accurate solutions (this
point is discussed in detail in the next section).

The advantages of such a formulation require, in contrast, a
large amount of analytical processing: in particular, a specific
attention has to be paid in evaluating the influence of the
kernel’s singularities, as the degree of singularity is no longer
reduced. Since the dyadic Green’s functions diverge when the -
source and the observation points coincide on the boundary s,
the integrals have to be evaluated in the limit for which the
observation point tends to the boundary from the appropriate
{external or internal) region.

If the boundary s is assumed to be represented as a polygo-
nal contour, this limit procedure can be applied in a rigorous
way: it leads to suitable expressions for the external and
internal electromagnetic fields, which are represented by the

sum of various terms
1 e/t ‘ a e/t 8 e/t
EE/ (rt):—/‘}'ijmz(ri)(a /gt/ l{)_ﬁ /i />d5
0 i
—/+sz<r;)( o605 )
W €/
.7 NO ]{Jez rt (]ﬂa /gt/ ’

+Jﬂal,gf/“ + kg ag — 25! ) ds'
ry-lue Hm(;’;,,gs/z /

+E2ge +yﬂal/gt z0>ds
+/-J“’”°]§H aal,zgf“l’ i@

The last term of the previous expression diverges when the
observation point lies on the boundary, and requires a “finite
part” integral operation in order to be evaluated numerically
[6]. To overcome such a difficulty, it is observed that the
second derivative with respect to the tangential coordinate of
the scalar Green’s function g; presents a singular behavior that
does not depend on the characteristics of the media; therefore,
this singularity can be eliminated by suitably combining the
expressions for the interior and exterior fields. Because of the
presence of the factor 1/k? before the last integral term, this
simplification can be accomplished by multiplying the interior
field by ¢, and adding the resulting expression to the exterior
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field. For the magnetic-field equation analogous considerations
can be applied.

Performing this simplification, and assuming the continuity
of the tangential fields, we have reached the following funda-
mental expression for the integral-equation system, from which
the numerical solution has been derived

{7+

Rt 4)
e {2520 Hw (o= (1D
g = {7 o
et
{5 o
el e

B o, ., Ba, .,
X []k_g%(gt _gt)n/°+jk_§ﬁ(gt _gt)16

e i ﬁZ 7
+(9¢ ~ ergt)20 — “]‘67(95 — 91)%0 | ds’
0

_ il ko H(r})
9“’{80 } f {—Ez<r;>
1 82 e £ e 1
[k_gm(gt - gt)n6 + (g5 = Ergt)16

ﬁ 9 € 2

. Hz A 1 82 e AN U ’
‘J‘“{if } $ {_Eff;/b }%W@t ~ 9)lods } =0
(5)

All the terms of this pair of equations can be evaluated
numerically everywhere, except for a neighborhood of the
observation point, where some of the terms in (5) involv-
ing tangential derivatives have to be evaluated as Cauchy’s
principal integrals.

III. PROCEDURES FOR THE NUMERICAL SOLUTION

The integral equation expression that has here been obtained
describes rigorously the electromagnetic eigenvalue problem
for any diclectric waveguiding structure whose contour can
be reduced to a polygon. As previously discussed, the present
formulation permits us to enlarge and improve the numerical
techniques for the solution.

A. Moment-Method Approach

By following the most common approach known in the
literature, the coupled integral equation system has first been
solved using the method of moments (MoM) [4], [6]. Since
the derivative operations on the unknowns have been inten-
tionally avoided in this approach, the most effective choice
for their expansion appears to be the linear combination of
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basis functions that are piecewise constant. In this case the
expansion allows us to perform analytical integrations without
approximations in the neighborhood of the observation points.

The easiest way to perform the testing is by point match-
ing, in which the continuity of the tangential components is
enforced at a number of points (chosen in the middle of each
integration subinterval) equal to the number of basis functions
used in the expressions of the unknowns.

A solution has also been developed with Galerkin’s method,
where the testing functions are equal to the basis functions.
This requires a double integration which may be performed
using standard numerical techniques (Gaussian integration)
[8].

The computational properties of the MoM implementations
have generally appeared quite satisfactory. Our integral equa-
tion formulation, however, allows us to significantly enrich
the class of available numerical techniques through the imple-
mentation of another attractive approach, which is presented
next.

B. Nystrom Method

In addition to the MoM approaches, we have also carried
out an interesting alternative procedure, which is not applicable
to the formulations already known in the literature, since the
absence of derivative operations on the unknown functions
is expressly required. This procedure consists of a suitable
adaptation of an integral equation solution method, often
referred to as Nystrom method [8], based on quadrature
formulas. The basic lines of the procedure are here explained.

Let us consider, with the sole object of simplifying the
notation, a scalar form of the integral equations system (5),
that can be presented in the following way

b
fr) = / K(r,)f(r") dr'. ®)

We can formally carry out a numerical integration of the
previous relation by using a suitable quadrature rule with
weights w;, thus obtaining an approximate expression for the
unknown function f

b N
f(r) = / K(r, ") f(r")dr' = ZwJK(r, r;)f(rg) ¢
a j=1

By forcing the previous relation to be exactly satisfied at the NV
quadrature abscissas (r = r}), one obtains a matrix equation
for the values of the unknown function f in the finite number
N of points.

This procedure, which is quite simple in principle, is not
directly applicable to (5), because it corresponds to the case in
which the kernel K becomes infinite when r» = r;. However, if
the kernel is integrable, as it is in the system (5), the Nystrom
approach may still be applied, after a rearrangement of the
integral equation(6) into the following equivalent form

b b
Fr)= / K(r, i) ()= F()] dr'+ £ (r) / K(r,r') dr'.
@®)
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The argument of the first integral is no longer singular when
r = v/ but assumes in this case a null value. The second inte-
gral involves only the kernel K; which is assumed integrable,
and can thus be evaluated analytically or numerically.

From expression (8), the following linear approximating
system is derived, which can be adapted to solve the original
iritegral equation (6)

Z w;K

(rayri)[f(rs) = F(ro)] + f(ri) R(r3)),

i=1,2,

LN )

where we have set

R(r;) = /ab K(rg, 7'

Fundamental advantages derive from the Nystrom formula-
tion, specifically due to the fact that no set of basis functions
is required for the unknowns and also numerical integrations
on the boundary are avoided. Suitable tests and comparisons
have demonstrated that the Nystrom method, by virtue of these
properties, generally possesses characteristics of calculation
speed and accuracy superior than MoM.

Moreover, it should be noted that expression (9) furnishes
an optimal interpolation formula for calculating the unknown
functions at points which do not coincide with the quadrature
ones (by replacing r; with arbitrary ). Further advantageous
features of the Nystrom method will be discussed in the
following sections.

(10)

C. Implementation of the Numerical Solution

As is typical for this kind of problems, once a homogeneous

linear system of equations is obtained through the discretiza-
tion operations, the eigensolutions for the electromagnetic field
are derived by enforcing the condition that the determinant of
the coefficient matrix is zero. From a numerical standpoint,
the location of these zeros is an ill-conditioned problem.
Reliable results have here been obtained by evaluating nearly
null minima of the squared modulus of the determinant, thus
avoiding the very delicate numerical search for complex zeros.

Alternatively, the same degree of accuracy can be achieved
by searching for the null minima of the amplitudes of the
matrix eigenvalues; this method requires a greater compu-
tational effort, but enables us both to distinguish between
degenerate solutions and to evaluate the field behavior through
the calculation of the relevant eigenvectors.

The convergence propetties of the described algonthms have
generally appeared quite satisfactory. This allows us to achieve
sufficiently accurate results even though the matrix dimensions
are kept rather small. Consequently, in particular with Nystrom
implementation, the computation times are extremely reduced
in comparison with other typical numerical techniques (FEM,
mode matching, etc.). Further information on the peculiarities
of the method will be provided in the next section.

IV. RESULTS AND DISCUSSION

The above described procedure enables us to determine
the propagation characteristics, the field configurations, etc.,
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Fig. 2. (a) BEM dispersion curves (8/ko versus B = fdh+/e, —1/co)
for the lowest modes of an image line (width 2w, height h) using the choice
of parameters given in Fig. 11 of [11]; (b) reference results given in Fig. 11
of [11]. Parameters £, = 2.22;w/h = 5

for a full-wave modal analysis of arbitrarily-shaped dielectric
waveguides.

Various tests have here been carried out both for guiding
dielectric structures already known in the literature and also
for dielectric resonators that find novel interesting applications.

* All the BEM data that will now be presented are derived with -

the Nystrom approach, due to its better performance. On the
basis of such tests, a discussion of the distinctive features of
this numerical formulation may be outlined.

A. Results for Dielectric Waveguides

In the literature, a great number of dielectric. waveguides
have been tested through various numerical methods (among
the most common: finite-element, finite-difference, mode-
matching, and integral-equation methods). Referring to some
of the available data, we present and compare here results for
a variety of geometries investigated with BEM.

As a first example, we consider the image line [11], which,
as is well-known, is not solvable analytically. Various tech-
niques have been employed, some of which are derivable
from the approaches used for rectangular-section dielectric
waveguides [12], {13]. The case shown in Fig. 2(a) gives the
modal dispersion curves from BEM for the first modes of an
image line, with the same choice of parameters as presented in
[11]: direct comparisons are possible with the various methods
reported specifically in Fig. 11 of [11], illustrated separately in
Fig. 2(b) for the sake of clarity (the same normalized variables
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Fig. 3. (a) BEM dispersion curves (b = [(B/ko)? — 1]/(sr — 1) versus
v = koty/e, — 1/x) for the first mode of an equilateral triangular dielectric
waveguide of height ¢, according to the choice of parameters given in Fig. 7(b)
of [14]; (b) reference results given in Fig. 7(b) of [14]. Parameters: ¢, = 2.25.

and plot dimensions in [11] have been chosen). Additional
results for structures having rectangular cross section will be
provided in the next section for parallelepiped resonators.
Another dielectric-waveguide geometry tested here, which
may present numerical difficulties due to sharp edges, is the
triangular-section guide. The results for the dispersion curves
of the first mode of an equilateral-triangle guide (of height
t) shown in Fig. 3(a) may be compared for instance with the

analogous situation in Fig. 7(b) of [14], which shows some’

different approaches: this is shown separately in Fig. 3(b)
(again with the same normalized variables and plot dimensions
as in the reference, to facilitate the comparisons).

Other specific cross sectional shapes have been analyzed,
and further results will now be reported for these using NRD
dielectric resonators instead of uniform waveguides, exploiting
an additional way of comparing numerical results.

B. Results for Dielectric Resonators

The BEM procedure can easily be extended to compute the
resonant frequencies of resonators of NRD type [9]. In fact,
these NRD resonators can be viewed as sections of dielectric
waveguides that are short-circuited by two (infinite) parallel
metal plates, placed perpendicularly to the longitudinal axis
at a certain distance a apart (usually chosen less than half
the free-space wavelength). In Fig. 4 we show the most usual
types of NRD resonators, with the relevant parameters: a
disc (or circular-section) and a parallelepiped (or rectangular-
section) NRD resonator in Fig. 4(a), and a notched square-
section resonator in Fig. 4(b) (discussed further later). For
these resonators, the 3 value is fixed by the presence of the
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b

Fig. 4. Typical nonradiative dielectric (NRD) resonators, which can be
viewed as sections of dielectric waveguides sandwiched between infinite
metal plates at a distance a apart, perpendicular to the axis direction; the
geometrical parameters and the coordinate systems are also indicated: (top)
disc with radius R (upper) and parallelepiped with transverse dimensions b
and [ (lower). (Bottom) a notched square-section resonator (shown without the
plates) with unperturbed sides b, notched sides ¢, and symmetrical corner’s
cuts of amplitude d(b = ¢+ d). Modes show perfect-electric-wall (PEW) and
perfect-magnetic-wall (PMW) symmetries with respect to the minor diagonal,

. dashed in the figure.

plates (8 = mn/a, with integer m), and the solution of the
integral-equation system is possible only at discrete resonance
frequencies.

Different examples have been considered here for typical
NRD components in order to verify in a straightforward man-
ner (including comparisons with experiments) the accuracy of
the described method.

A first class of examples concerns dielectric structures with
rectangular cross section (transverse dimensions b and [). In
Fig. 5 we show a mode chart for the resonant frequencies f as
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NRD PARALLELEPIPED RESONATOR

f [GHz] PEW at x=0
12 — . )
11.51
11 L
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1 [mm]
(G
f [GHz] PMW at x=0

12 . . n L "

1.5+

10.5 1

6 5 10 15 20 25 30 35 40
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(b

Fig. 5. BEM results for the frequencies f of the resonant modes as functions
of the length ! for rexolite NRD rectangular-section resonators of width b and
height a: (a) insertion of a longitudinal PEW at z = 0; (b) insertion of a
longitudinal PMW at = 0. Parameters; ¢ = 2.53;a = 123 mm; b =
10.15 mm. '

functions of the length [ of parallelepiped NRD resonators, for
a fixed choice of the other parameters (defined in Fig. 4(a)).
A half-sinusoid vertical (z) variation of the fields is assumed,
as is customary in NRD devices. The symmetrical cases
corresponding to either a perfect electric or a perfect magnetic
wall (PEW or PMW ) placed centrally and parallel to the /
sides (i.e., on the yz plane at z = 0), are plotted in Fig. 5(a)
and (b), respectively. For these cases, it has been possible
to make comparisons both with measured values (derived by
an X-band NRD-guide experimental setup, with prototypes
made from rexolite (e, = 2.53)) and with theoretical values
(obtained from alternative techniques, such as finite elements,
point matching, and approximated transverse resonance) . [9].
Some numerical data are presented in Table I for the PEW
case shown in Fig. 5(a).

As previously mentioned, in addition to the modal eigen-
solutions, the BEM method also enables a direct computation
of the unknown equivalent currents (defined in (2)) on the
surface s, and also of the electromagnetic field at each point
both in the internal and external regions. The behavior of
the fields on the surface s is rather sensitive to compute,
particularly in the proximity of corners, where the transverse
.tangential components suddenly change directions. Examples

of the spatial behaviors of the unknown tangential electric,

fields at the interface (longitudinal F, and transverse Fj)
are plotted in Fig. 6(a) and (b), respectively, for the first
mode of a rectangular cross-section dielectric guide with an
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TABLE 1
BEM RESULTS FOR THE RESONANCE FREQUENCIES fres OF NRD
RECTANGULAR-SECTION RESONATORS OF VARIOUS LENGTHS [, IN THE
PEW CASE AS IN FIG. 5(a). REFERENCE DATA ARE DERIVED
THROUGH OTHER NUMERICAL TECHNIQUES AND MEASUREMENTS [9]:
TRT (TRANSVERSE RESONANCE TECHNIQUE), PMM (POINT MATCHING
METHOD), FEM (FINITE ELEMENT METHOD). PARAMETERS: AS IN FIG. 5

fr
GHezs] Measured TRT PMM FEM BEM
1 Values
[mm]

10 11.21 11.21 11.18 11.22 11.13
15 10.78 10.72 10.73 10.80 10.72
20 10.50 10.47 10.50 10.54 10.49
25 - 10.36 10.32 10.30 - 10.34
30 10.23 10.23 — — 10.24
35 10.17 10.17 — — 10.17
40 10.18 10.12 — — 10.13

RECTANGULAR-SECTION TANGENTIAL ELECTRIC FIELD

E, E,
] 5 22 ‘ 1
" v 2 TN
0.5 / 4

, el / \

1.4
ast—y / \
/ 1.2 /
1 : 1
-5 -2.5 0 2.5 5 10 -5 0 5 10
. x [mm] y [mm]
(@)
E| = By E; = Ey
1.5
13 \ / 0.5
' 0
-1.4 05
15 1
-1.5
-5 25 0 25 5 -10 -5 [} 5 10
X [mm] y [mmj]
®

Fig. 6. BEM solutions of the tangential electric field on the air/dielectric
interface for the first mode of a rectangular-section dielectric waveguide, with
aPEW at z = 0 and a PMW at y = 0: (a) longitudinal component E, versus
x (left) and versus y (right); (b) transverse component E; = E. versus z
(left) and E; = Ey versus y (right). Parameters: ¢, = 2.53;0 = 10 mm;
{ = 20 mm; f = 10.5 GHz.

~z = 0 perfect-electric and a y = 0 perfect-magnetic symmetry

walls.

As a further significant check of the proposed approach,
we have also considered dielectric structures with a circular
cross section, which has been approximated by a polygon with
a sufficiently-large number of sides. Representative examples
are reported in Table II for some disc NRD resonators (radius

- R, height a), giving the frequencies f of the hybrid modes

HEM,,;, in the usual NRD operating range [9] (indices
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TABLE 11

BEM COMPUTATION OF THE RESONANT FREQUENCIES IN NRD RESONATORS
WwITH CIRCULAR CROSS SECTION OF RaDiUs R AND HEIGHT a; (a) MODES FOR
A REXOLITE RESONATOR IN UsuAaL NRD OPERATING RANGE: THE PERCENTAGE

OF ERROR 1S CALCULATED WITH RESPECT TO EXACT ANALYTICAL DATA.

PARAMETERS: & = 2.53; R = 11 mm; a = 12.3 mm; (b) MODES FOR A
HiGH-PERMITTIVITY PARALLEL-PLATE DIELECTRIC RESONATOR: COMPARISONS
ARE PRESENTED WITH REFERENCE TO EXACT VALUES AND TO DATA REPORTED

IN TABLE 3.1 OF [15]. PARAMETERS: £ = 38; R = a = 4,25 mm

Modes BEM Values Error
HEM npm f [GHz] %

HEM 111 9.225 - 0,03

HEM 011 10.698 0.00

HEM 021 11.137 -0.01

HEM 211 11.335 —-0.02

(@)
Disc Resonator fres [GHz] fres [GHz] freg [GHz]

Modes Exact Solutions Ref, [15] BEM
HEM 111 6.99 7.07 6.98
TE 011 7.98 798 7.98
HEM 211 8.73 8.76 8.72
TM 011 8.97 9.21 8.95
HEM 121 9.72 9,17 9.72
HEM 311 10.68 10.90 10.68
HEM 131 11.29 11.46 11.29
HEM 221 11.51 11.80 11.50
HEM 112 12,16 12.13 12.16
TE 021 12.20 12.02. 12.20
HEM 411 12.70 12.69 12.70
TE 012 12.96 13.14 12.96
HEM 212 13.23 13.26 13.23

(b)

n,p,m refer to the angular, radial, and axial variations,
respectively). The data of Table IJ(a) are for a rexolite NRD
disc resonator for X-band applications. In Table II(b), the
results have been simulated for a high-permittivity parallel-
plate dielectric resonator of ceramic type (g, = 38), for which
reference data are also available in the literature [15].

For this circular cross-section geometry, the accuracy of the
BEM values has been expressed through a relative error that
is evaluated with respect to the results derived by a classi-
cal rigorous approach for circular dielectric rods, based on
the straightforward solution of the eigenvalue transcendental
equation [9], [15]. The agreement between BEM and “‘exact”
results appears in all cases to be remarkable.

The BEM method has also been tested by considering
dielectric structures having nonconventional shapes. In.par-
ticular, slight perturbations in the cross-section geometry have
recently found an increasing interest in specific microwave
devices: e.g., compact high-performance filters of dual-mode
type can be obtained by making use of dielectric resonators
with notches or cuts altering their rotational symmetry. The
effect of a proper geometrical perturbation on a circular or
square resonator is to separate a degenerate modal frequency
into a pair of close frequencies (“quasidual” modes) [10].
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NRD NOTCHED SQUARE-SECTION RESONATOR
Frequency § [GHz]
1.7

11.6

1.5

f, (PMW)
11.4

1.3

1, (PEW)
11.2

IS Wy

11.1

] A 2 3 4 5
Cut's amplitude d {mm]

Fig. 7. BEM analysis of slightly-perturbed cross sectional shapes: variation
of the quasi-dual resonant frequencies f1 and fa for a square-section NRD
resonator (illustrated in Fig. 4(b)) as the amplitude d of the corner’s cut varies.
Parameters: &, = 2.53;a¢ = 12.3 mm; b = 10 mm.

The accurate prediction of the location of such close res-
onances as a function of the small perturbations, which is a
basic prerequisite for filter design, represents a very difficult
task for solution with numerical procedures. The example
that has been presented in Fig. 7 refers to a notched square-
section NRD resonator, as shown in Fig. 4(b): a symmetric
cut of amplitude d is derived along a corner of the square-
section parallelepiped (height a, unperturbed sides b, notched
sides ¢, so that b = ¢ + d): in this case, the couple of
resonances are related to a perfect-electric and to a perfect-
magnetic symmetry wall placed along the notched-square
minor diagonal, dashed in Fig. 4(b). The BEM approach
enables us to precisely calculate the variation of the location
of the quasidual resonant frequencies f; and f5 as a function
of the perturbation d, as shown in Fig. 7 for the lowest

pair of resonances: the larger the notch, the greater the

frequency separation. The experimental investigation on such
components [10] shows the full agreement with this theoretical

behavior.

C. ‘Cbmments on the Features of the Method

The tests that have been carried out illustrate many favorable
properties which make this BEM formulation competitive in
comparison with any other numerical technique for obtain-
ing a complete solution of the modal properties in arbitrary
dielectric waveguides. Some considerations of the relevant
computational features are discussed next.

First, as previously mentioned, this method has demon-
strated a very good computing efficiency. The storage re-
quirements depend on the number of points N chosen on
the contour for the unknown expansion, so that the zeroing’
of a determinant corresponding to a 4N X 4N matrix is
usually required. Since the convergence of the method is
quite fast, accurate solutions may be achieved with limited
memory space. As a proof of the effectiveness of the method,
representative tests of the convergence properties are given
in Table III for the unconventional geometry of a notched
square-section NRD resonator: the accuracy in the calculation
of the quasidual resonant frequencies is evaluated for different
choices of the number of points on the various sides of the
contour. It is observed that an excellent numerical stability of
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TABLE III

BEM CONVERGENCE PROPERTIES. ACCURACY TESTS OF QUASIDUAL RESONANCE
FREQUENCIES f1 (PEW) AND fo (PMW) FoR DIFFERENT CHOICES OF THE
NumseR OF POINTS Ny, Nc, Ny ON THE SIDES b, ¢, d OF A NOTCHED
SQUARE-SECTION NRD RESONATOR' (a) f1, fo VALUES (ROUNDED AT THE
MHz) FOR Ny, N¢, Ng VARIABLE IN PROPORTION TO THE LENGTHS OF THE SIDES
b,c,d: (b) f1, f2 VALUES (ROUNDED AT THE MHz) FOR Ny, N, Ny EQuaL
FOR ALL THE SIDES, c¢) PERCENTAGES OF ERROR FOR THE f1, fo VALUES AS THE
NUMBER OF POINTS NV}, = N, = N, INCREASES FURTHER (THESE FREQUENCY
VARIATIONS ARE OF THE ORDER OF TENS OF kHz). THE REFERENCE EXACT
VALUES ARE THOSE OF THE CASE Ny = N = Ny = 10 : f; = 11.1853
GHz, f2 = 11.2528 GHz., PARAMETERS ASIN FiG. 7; d = 2 mm

Side b Side ¢ Sided f1 [GHz] f2 [GHz]
# points Np | # points N, | # points Ng (PEW) (PMW)
3 2 1 11,191 11.260
5 4 1 11.188 11.255
6 4 2 11.187 11.2563
10 8 2 11.185 11.253
@
Side b Side ¢ Sided ) [GHz] f2 [GHz]
# points Np | # points N, | # points Nz (PEW) (PMW)
1 1 1 11.137 11.210
2 2 2 11.190 11.266
3 3 3 11.185 11.255
4 4 4 11.185 11.254
5 5 5 11.185 11.253
()]
Side b Side ¢ Sided Error % Error %
# points Np | # points N, | # points Ng | f1 (PEW) fo (PMW)
6 6 6 0.0027 0.0033
7 7 7 0.0018 0.0015
8 8 8 0.0009 0.0011
9 9 9 0.0004 0.0004
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the solution is generally achieved with a very small number
of points.

Furthermore, with the Nystrom method the speed in cal-
culating the matrix elements is particularly high, so that
the calculation time is greatly reduced. As an example, for
the search of all the solutions for the circular cross-section
structure illustrated in Table II(a) (choice of 12 equivalent-
polygonal sides with 2 points for each side, in the frequency
range 9-11.5 GHz with a step of 50 MHz), a CPU time of
about 40 seconds was needed on an HP-712 workstation.

This method is very general in terms of both the character-
istics of the media and the geometries of the structures. In fact,
it has turned out that our formulation is particularly accurate
in modeling any dielectric contour, both those with curved
shapes (as for the circular cross section), and those with sharp
corners (as for the triangular and notched sections).

Moreover, the accuracy has been demonstrated to be com-
pletely adequate to calculate the characteristics of all the modal
solutions, for any order of mode (as in the examples of the
circular and rectangular resonators) and even in the sensitive
situations of nearly degenerate modes (as in the example of
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 the notched resonator). In addition, it should be noted that in

all the cases no spurious solution has been generated.

The method works very well in very different frequé:ncy
ranges, giving satisfactory results both at high frequency and
when the cutoff region is approached (see, as an example, the
data for the rectangular cross section, and particularly for the
image line).

Although a fair amount of analytic pre-processing is re-
quired for such a BEM formulation, once the numerical
implementation is carried out, the computer program appears
rather straightforward and simple to use.

V. CONCLUSION

Even though the boundary element method is in principle a
well-known technique for solving efficiently a variety of elec-
tromagnetic problems, in practice a great deal of difficulties
can arise from a numerical point of view. The BEM procedure
that has been developed here allows us to obtain a complete
modal characterization of arbitrarily-shaped dielectric waveg-
viding structures making use of a novel formulation, which
considerably improves the computational speed, convergence,
and accuracy.

These important advantages have been achieved through an
analytical development that allows us to advantageously avoid
derivative operations on the unknowns. To reduce the phenom-
ena of numerical instability, a careful theoretical evaluation of
singular terms has been performed. The numerical solution
has then been carried out by using both standard (method of
moments) and alternative methods of discretization.

Specifically, a novel implementation, not applicable to the
formulations already presented in the literature (since the
absence of derivatives on the unknowns is a prerequisite),
was of particular interest: this procedure is based on a proper
adaptation of the integral-equation solution method due to
Nystrom, and requires neither a choice of basis functions for
the unknowns nor any numerical integration on the boundary.
Using this method of discretization, the BEM formulation
has furnished very fast and precise results, as confirmed by
comparisons with reference theoretical and experimental data
for various dielectric structures employed in practice.

Even compared to well-known rigorous numerical meth-
ods (finite elements, mode matching, etc.), this new BEM
formulation has proven to be a very accurate and useful
tool for efficient and versatile analysis of a wide variety of
waveguiding structures.
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